
PHARMACEUTICALS

Low pH Stability with HALO® LPH-C18

TEST CONDITIONS:

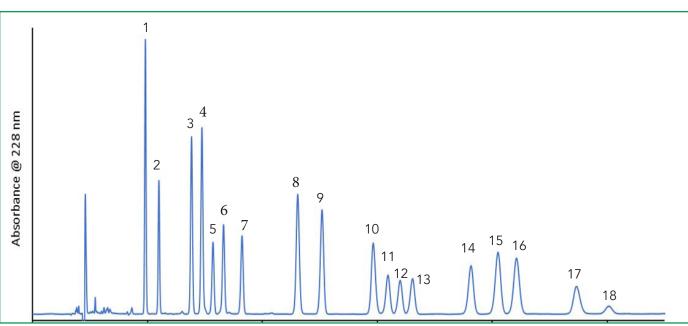
Column: HALO 90 Å LPH-C18, 2.7 µm 2.1 x 50 mm Part Number: 92822-416 Mobile Phase A: Water, 1% TFA (pH: 1) Mobile Phase B: Acetonitrile Gradient: Time %B 0.0 20 7.50 20 5 7.51 45.00 5 47.00 100 51.00 100 20 51.01 60.00 20 Flow Rate: 0.5 mL/min Pressure: 108 bar Temperature: 60 °C Detection: UV 254 nm, PDA Injection Volume: 0.4 µL Sample Solvent: 25/75 ACN/ Water Data Rate: 100 Hz Response Time: 0.025 sec. Flow Cell: 1 µl LC System: Shimadzu Nexera X2

A separation of parabens is performed on a HALO 90 Å LPH-C18 column under low pH (pH 1) and high temperature conditions compared to a standard C18 SPP column. Due to the sterically protected ligand, the LPH-C18 column can withstand these conditions and maintain stable retention times while other columns show decreased retention over time indicating a loss of stationary phase.

AMT_AN_Rev_0

🔁 advancedmaterialstechnology

Made in the USA | halocolumns.com


INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON

CANNABIS

Separation of 18 Cannabinoids using HALO® LPH-C18

TEST CONDITIONS:

Column: HALO 90 Å LPH-C18, 2.7 µm, 4.6 x 150 mm Part Number: 92824-716 Mobile Phase A: 5 mM Ammonium Formate, 0.1% Formic Acid Mobile Phase B: Acetonitrile, 0.1% Formic Acid Isocratic: 75 %B Flow Rate: 1.5 mL/min Pressure: 232 bar Temperature: 30°C Detection: PDA, UV: 228 nm Injection Volume: 3 µL Sample Solvent: 75/25 MeOH/ Water Data Rate: 100 Hz Response Time: 0.025 sec. Flow Cell: 1 µl LC System: Shimadzu Nexera X2

PEAK IDENTITIES:

- 1. Cannabidivarinic acid (CBDVA)
- 2. Cannabidivarin (CBDV)
- 3. Cannabidiolic acid (CBDA)
- 4. Cannabigerolic acid (CBGA)
- 5. Cannabigerol (CBG)
- 6. Cannabidiol (CBD)
- 7. Tetrahydrocannabivarin (THCV)
- 8. Tetrahydrocannabivarinic acid (THCVA)
- 9. Cannabinol (CBN)
- 10. Cannabinolic acid (CBNA)
- 11. Exo-tetrahydrocannabinol (EXO-THC)
- 12. delta 9- Tetrahydrocannabinol (D9-THC)
- 13. delta 8- Tetrahydrocannabinol (D8-THC)
- 14. Cannabicycol (CBL)
- 15. Cannabichromene (CBC)
- 16. Tetrahydrocannabinolic acid A (THCA-A)
- 17. Cannabichromenic acid (CBCA)
- 18. Cannabicyclolic acid (CBLA)

A HALO[®] LPH-C18 column is used to separate a mixture of eighteen cannabinoids, showing fast results and high resolution within critical pairs. Cannabinoids are a class of chemical compounds primarily found in the marijuana plant. Many of these compounds have been found to provide medicinal benefits such as reduction in pain and inflammation.

AMT_AN_Rev_0

🔃 advancedmaterialstechnology

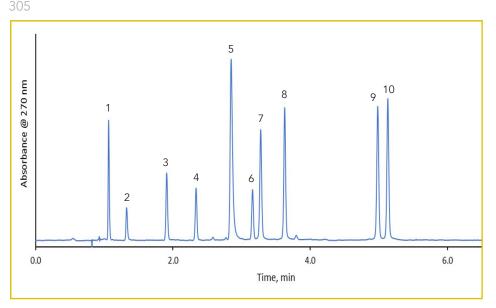
Made in the USA | halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON

ENVIRONMENTAL

Peak #	Compound	Transition	CE
1	Carbendazim	192>160.1	-21
2	Dicrotophos	238>112	-22
3	Azamethiphos	324.9>183	-17
4	Pyrimethanil	200.10>107.2	-25
5	Carbofuran	222>123	-22
6	Dodemorph	282.2>116.1	-25
7	Atrazine	216.03>174.1	-17
8	Diuron	232.94>72	-17
9	Iprovalicarb	321.1>119	-30
10	Azoxystrobin	404.04>372.1	-14
11	Fluopram	396.98>208	-25
12	Methoxyfenozide	369.1>149.1	-25
13	Flutolanil	324>242.1	-28
14	Picoxystrobin	368>145.1	-25

AMT_AN_Rev_O
advancedmaterialstechnology


Made in the USA | halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON

FOOD / BEVERAGE

Separation of Common Catechins and Caffeine Found in Tea via LC-UV

PEAK IDENTITIES

- 1. Gallic Acid
- 2. Gallocatechin
- 3. Epigallocatechin
- 4. Catechin
- 5. Caffeine
- 6. Epicatechin
- 7. Epigallocatechin Gallate
- 8. Gallocatechin Gallate
- 9. Epicatechin Gallate
- 10. Catechin Gallate

TEST CONDITIONS:

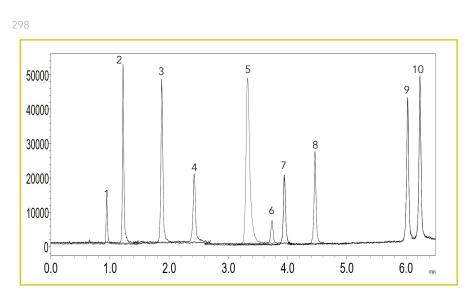
Column: HALO 90 Å LPH-C18 2.7 μm, 4.6 x150 mm **Part Number:** 92824-716 **Mobile Phase A:** Water, 0.2% Formic Acid (pH: 2.45) **Mobile Phase B:** Acetonitrile, 0.2% Formic Acid **Gradient: Time %B**

lime	%E
0.0	10
0.5	10
6.0	23
7.0	23
.8 mL/min	
5 bar	
:40 °C	

Flow Rate: 1.8 mL/min Pressure: 395 bar Temperature: 40 °C Detection: PDA, UV 270 nm Injection Volume: 5 μL Sample Solvent: 90/10 Water/ Acetonitrile LC System: Shimadzu Nexera X2 Catechins belong to the subgroup of polyphenols called flavonoids. These compounds contain antioxidant properties and exist in food and medicinal plants, including tea. A UV separation of catechin and caffeine standards shows excellent resolution on a HALO[®] LPH-C18 column. This column is ideal for low pH separations due to its sterically protected ligand, preventing acid hydrolysis and reducing retention drift over time.

AMT_AN_Rev_0

advancedmaterialstechnology


Made in the USA | halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON

FOOD / BEVERAGE

LC-MS Separation of Common Catechins Found in Tea

Peak #	Compound	M/Z
1	Gallic Acid	169
2	Gallocatechin	305
3	Epigallocatechin	305
4	Catechin	289
5	Caffeine	195
6	Epicatechin	289
7	Epigallocatechin Gallate	457
8	Gallocatechin Gallate	457
9	Epicatechin Gallate	441
10	Catechin Gallate	441

TEST CONDITIONS:

Column: HALO 90 Å LPH-C18 2 µm, 2.1 x1 00 mm Part Number: 91822-616 Mobile Phase A: Water, 0.2% Formic Acid (pH 2.45) Mobile Phase B: Acetonitrile, 0.2% Formic Acid Gradient: Time %B

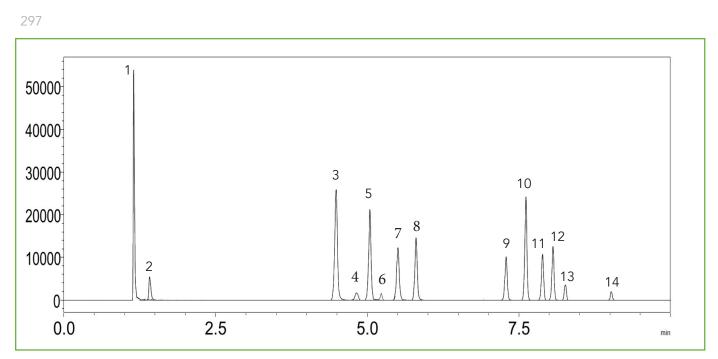
Time	70 B
0.0	10
1.0	10
6.0	21
7.0	21
3 mL/min	
har	

Flow Rate: 0.3 mL/min Pressure: 438 bar Temperature: 40 °C Detection: +/- ESI MS/MS Injection Volume: 2 µL Sample Solvent: Water MS System: Shimadzu 8040 LC System: Shimadzu Nexera X2

MS CONDITIONS:

Nebulizer Gas Flow: 2 L/min DL Temperature: 250 °C Heat Block Temperature: 400 °C Drying Gas Flow: 10 L/min

Catechins belong to the subgroup of polyphenols called flavonoids. These compounds contain antioxidant properties and exist in food and medicinal plants, including tea. An LC-MS separation of catechins and caffeine is demonstrated on a HALO[®] LPH-C18 column showing excellent resolution using purified standards. This column is ideal for low pH separations due to its sterically protected ligand, preventing acid hydrolysis and reducing retention drift over time.


AMT_AN_Rev_0

Wade in the USA I halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON HALO[®] and Fused-Core[®] are registered trademarks of Advanced Materials Technology

ENVIRONMENTAL

Pesticide Screening of Barley: HALO 90 Å LPH-C18

TEST CONDITIONS:

Column: HALO 90 Å LPH-C18 2 µm, 2.1 x 100 mm Part Number: 91822-616 Mobile Phase A: Water, 0.1% Formic Acid Mobile Phase B: Acetonitrile, 0.1% Formic Acid Gradient: Time %B 0.0 30 1.0 30 12.0 100 16.0 100 Flow Rate: 0.2 mL/min Pressure: 235 bar Temperature: 30 °C **Detection:** +ESI MS/MS Injection Volume: 2 µL Sample Solvent: Methanol MS System: Shimadzu 8040 LC System: Shimadzu Nexera X2

MS CONDITIONS:

Nebulizer Gas Flow: 3 L/min DL Temperature: 250 °C Heat Block Temperature: 400 °C Drying Gas Flow: 18 L/min

Pesticide screening methods can help show whether there is a concern with your soil, crops, and even water supply. A pesticide screening is performed on a sample of barley using a HALO 90 Å LPH-C18 column. This column is ideal for low pH testing conditions based on its sterically protected ligand which helps reduce acid hydrolysis of the stationary phase leading to an increase in column lifetime.

AMT_AN_Rev_0

🔃 advancedmaterialstechnology

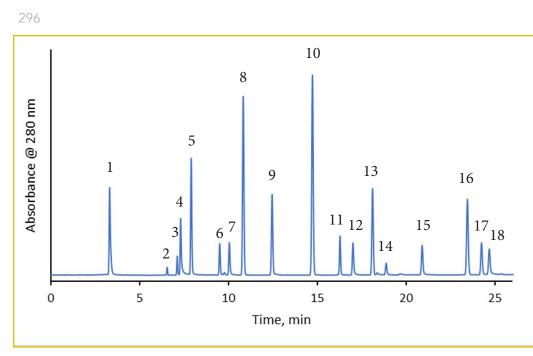
Made in the USA | halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON

ENVIRONMENTAL

Peak #	Compound	Transition	CE
1	Carbendazim	192>160.1	-21
2	Dicrotophos	238>112	-22
3	Azamethiphos	324.9>183	-17
4	Pyrimethanil	200.10>107.2	-25
5	Carbofuran	222>123	-22
6	Dodemorph	282.2>116.1	-25
7	Atrazine	216.03>174.1	-17
8	Diuron	232.94>72	-17
9	Iprovalicarb	321.1>119	-30
10	Azoxystrobin	404.04>372.1	-14
11	Fluopram	396.98>208	-25
12	Methoxyfenozide	369.1>149.1	-25
13	Flutolanil	324>242.1	-28
14	Picoxystrobin	368>145.1	-25

AMT_AN_Rev_O
advancedmaterialstechnology


Made in the USA | halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON

FOOD / BEVERAGE

Separation of Polyphenols in Wine

TEST CONDITIONS:

Column: HALO 90 Å LPH-C18, 2.7 μm 2.1 x 100 mm **Part Number:** 92822-616 **Mobile Phase A:** Water/ 0.1% Formic Acid **Mobile Phase B:** Acetonitrile/ 0.1% Formic Acid

NODILE FILASE D. ACELONILINE/ 0.1/0 FOIT			
Gradient:	Time (min)	%B	
	0.0	0	
	3.5	8	
	7.1	10	
	25.0	30	
	26.0	40	
	27.0	100	
	29.0	100	
	30.0	0	
	35.0	0	
Flow Rate: 0.3	3 mL/min		
Pressure: 159	bar		
Temperature:	30 °C		
Detection: UV	/ 280 nm, PDA		
Injection Volu	me: 0.7 μL		
Sample Solve	nt: Water		
Data Rate: 10	0 Hz		
Response Tim	ne: 0.025 sec.		
Flow Cell: 1 μL			
LC System: Shimadzu Nexera X2			

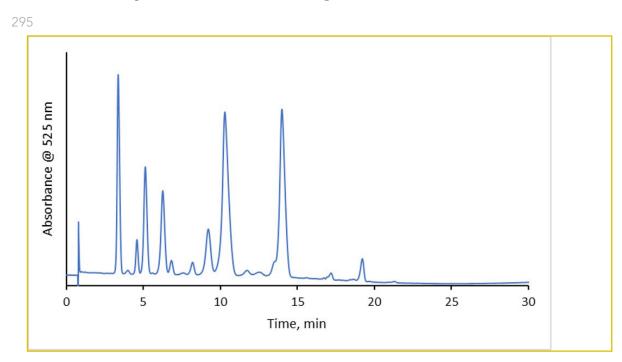
Polyphenols can be found in a wide variety of plant-based foods and are packed with antioxidants and potential health benefits. There are more than 8,000 of these types of compounds which contain multiples of phenol units. Common polyphenols found in wine are separated using a HALO 90 Å LPH-C18 column using analytical standards. This stationary phase contains a sterically protected ligand which is ideal for high stability under low pH conditions.

AMT_AN_Rev_0

🔁 advancedmaterialstechnology

Made in the USA | halocolumns.com

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON HALO[®] and Fused-Core[®] are registered trademarks of Advanced Materials Technology


PEAK IDENTITIES

- 1. Gallic Acid
- 2. Epigallocatechin
- 3. Chlorogenic Acid
- 4. Catechin
- 5. Caffeic Acid
- 6. Epicatechin
- 7. Epigallocatechin Gallate
- 8. p-Coumaric Acid
- 9. Ferulic Acid
- 10. o-Coumaric Acid
- 11. Quercitrin
- 12. Myricetin
- 13. Resveratrol
- 14. Morin
- 15. Quercetin
- 16. Naringenin
- 17. Apigenin
- 18. Kaempferol

FOOD / BEVERAGE

Separation of Anthocyanins in Blueberries

TEST CONDITIONS:

Column: HALO 90 Å LPH-C18, 2.7 µm 2.1 x 100 mm Part Number: 92822-616 Mobile Phase A: Water/ 3% Phosphoric Acid (pH: 1.4) Mobile Phase B: Methanol Gradient: Time %B 23 0.0 10.8 26 29.8 60 Flow Rate: 0.27 mL/min Pressure: 144 bar Temperature: 30 °C Detection: UV 525 nm, PDA Injection Volume: 4.5 µL Sample Solvent: Water Data Rate: 100 Hz Response Time: 0.025 sec. Flow Cell: 1 µl

Anthocyanins, a category of polyphenols, are a type of pigment found in plants that offer several health benefits. These flavonoids have antioxidant effects that can be found in a variety of different fruits and vegetables, including blueberries. A separation of anthocyanins is performed on a HALO 90 Å LPH-C18 column, which is ideal for the low pH conditions of this method. Blueberries were mixed with methanol, water, and formic acid followed by being spun down and filtered. Due to the sterically protected ligand, the LPH-C18 column can withstand these low pH conditions and maintain stable retention times while standard C18 columns will show retention loss over time.

AMT_AN_Rev_0

where the second second

Made in the USA | halocolumns.com

LC System: Shimadzu Nexera X2

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON HALO[®] and Fused-Core[®] are registered trademarks of Advanced Materials Technology